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Abstract

The numerical solutions of two related variations of a sequential version of a form of

the bioequivalence problem was presented in a report by Hwang (1991). In that report

he referred to our unpublished results bounding the solutions and providing asymptotic

expansions. The present report has two major functions. One is to derive and amplify these

results, and incidentally to correct an error. The second is to gather together in one place,

and with relatively little of the abbreviation characteristic of previous publications, many

of the details that are useful in deriving the asymptotic expansions, e.g., see Breakwell and

Chernoff (1964), Chernoff (1965a, 1972), and Chernoff and Petkau (1981).

In Hwang's report he presented the Bayesian decision theoretic approach in which

the problem is related to a stopping problem involving Brownian motion, a stopping cost

represented by a single cost parameter c, and an initial point (y, s) depending on the

prior normal distribution of an unknown parameter and other known parameters of the

problem. The solution of the problem is represented by dividing up the set {(y, s) : s > 0}

into a continuation set C and a stopping set S.

AMS 1991 subject classification. Primary 62L10, secondary 62P10.

Key words and phrases. Bioequivalence, sequential anlaysis, Bayes risk, Brownian motion,

free boundary problems, optimal stopping, asymptotic expansions.
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Abstract

The numerical solutions of two related variations of a sequential version of a form of

the bioequivalence problem was presented in a report by Hwang (1991). In that report

he referred to our unpublished results bounding the solutions and providing asymptotic

expansions. The present report has two major functions. One is to derive and amplify these

results, and incidentally to correct an error. The second is to gather together in one place,

and with relatively little of the abbreviation characteristic of previous publications, many

of the details that are useful in deriving the asymptotic expansions, e.g., see Breakwell and

Chernoff (1964), Chernoff (1965a, 1972), and Chernoff and Petkau (1981).

In Hwang's report he presented the Bayesian decision theoretic approach in which

the problem is related to a stopping problem involving Brownian motion, a stopping cost

represented by a single cost parameter c, and an initial point (y, s) depending on the

prior normal distribution of an unknown parameter and other known parameters of the
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1. Introduction

The numerical solutions of two related variations of a sequential version of a form of

the bioequivalence problem was presented in a report by Hwang (1991). In that report

he referred to our unpublished results bounding the solutions and providing asymptotic

expansions. The present report has two major functions. One is to derive and amplify these

results, and incidentally to correct an error. The second is to gather together in one place,

and with relatively little of the abbreviation characteristic of previous publications, many

of the details that are useful in deriving the asymptotic expansions, e.g., see Breakwell and

Chernoff (1964), Chernoff (1965a, 1972), and Chernoff and Petkau (1981).

In Hwang's report he presented the Bayesian decision theoretic approach in which

the problem is related to a stopping problems involving Brownian motion, a stopping cost

represented by a single cost parameter c, and an initial point (y, s) depending on the

prior normal distribution of an unknown parameter and other known parameters of the

problem. The solution of the problem is represented by dividing up the set {(y, s) : s > 0}

into a continuation set C and a stopping set S.

In Section 2, we shall describe the formulations of the bioequivalence problems, the

corresponding stopping problems and the relevance of the free boundary problem. In

Section 3 we describe the results of Hwang and how our theoretical results related to

these. In Section 4, we cumulate details about separable solutions of the heat equation.

These will serve as a repository for future reference and many of these will be relatively

unnecessary for this particular problem.

In Section 5 we will derive the bounds and in Section 6, the asymptotic expansions will

be calculated formally. No attempt will be made to repeat the type of proof of Chernoff

(1965a) that these expansions are true asymptotic expansions.

For these particular problems, Hwang's computer program, modeled on Chernoff and

Petkau (1984) provides a very good numerical solution, and the bounds and expansions are

of little more than academic interest. Nevertheless these theoretical results were derived

first, and provided a qualitative view of the solution which seemed quite strange at the
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time. Without that view, it may have been difficult to produce a good computation. In

one particular case, Hwang shows when the accuracy of the numerical procedure has to be

improved, as it readily can with more computer time, in order to match better with some

of the asymptotic expansions.

Most of the bounds in Section 5 apply relatively simple principles compared to those

pioneered by Bather (1962, 1970) and illustrated in Chernoff (1972). In spite of the length

of this manuscript, the amount of time the authors spent in their collaboration leading to

these theoretical results was relatively small, because it was felt that enough was known

to facilitate the numerical calculation. However a miscalculation at the time failed to

indicate the presence of another term of theoretical interest, which is still unaccounted for

and which will be discussed in Section 6.

2. Problem Formulation and Summary of Results

There are several alternative formulations of the bioequivalence problem. Some time

ago Bather, Chernoff and Petkau (1988) presented the following formulations. In his

description of the formulation, Hwang referred to work by Metzler (1974), O'Quigley and

Baudoin (1988) and Selwyn et. al. (1981).

Let X be a normally distributed variable, with unknown mean JL and known

variance a 2 , representing the difference between the outcomes of two treatments on a

matched pair of subjects. One of these treatments is the standard and the other is a new

treatment which is hoped to have matching pharmacological properties. As observations

on X cumulate, the decision is made to continue or stop sampling. When sampling is

stopped, the decision is made to declare difference or equivalence. Presumably if difference

is declared, the search for a new equivalent formulation is repeated.

The costs involved are that of having to start over if nonequivalence is announced,

that of having to accept the mean M, which may be different from 0, when equivalence

is announced, and a cost of sampling. The cost of starting over is some constant k0

independent of y since y is simply a characteristic of the candidate drug which is

discarded. The cost of accepting bioequivalence should depend on how large P is. We

will consider two versions. In the first this cost is k1p 2 and in the second it is k2 I1p.
Finally, we shall assume that the cost of sampling is linear in the sample size n, i.e., con
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for n pairs observed. Implicit in this sequential version of the problem is the assumption

of immediate observed response to treatment.

Clearly the operating characteristics of any procedure applied in this problem will

depend on the unknown mean M. The concept of the optimal procedure requires some

criterion of optimality. By accepting a Bayesian formulation with a prior normal distribu-

tion with mean IA0 and variance a., we establish a clear cut optimization problem, which

can in principle be solved directly by the backward induction of dynamic programming.

The theoretical study of this problem can be facilitated by converting the problem

to a related one where the sum of the first n i.i.d. observations X 1,X 2 ,. . ,X,n is

replaced by Brownian Motion X(t) with unknown drift jy and known variance a 2 per

unit time. The original discrete time problem may be regarded as a special version of the

continuous time problem where stopping is permitted only at certain discrete times. One

outcome of this continuous time formulation is that the class of problems can be reduced to

a one parameter family of problems, the numerical solution of which can be approximated

arbitrarily well by techniques outlined in Chernoff and Petkau (1986). Another outcome is
the relation of the optimization problem to the solution of a free boundary problem (FBP)

involving the heat equation.

In the discrete time Bayesian version, the posterior probability distribution of p after

n observations is given by

(2.1) C(P1X1,X2,. Xn) = (Y,,Sn)

where

(2.2) Y.- =Loo 0 2 + (X 1 +... + X)Oa-2

-2 -ao2 + no-r

and

(2.3) sn = (no,2 + na- 2 )-l

In the continuous time version

(2.4) £(pIJX(t'),O < t' < t) = N(Y(s),s)

where

(2.5) Y(s) = (poao 2 + X(t)a- 2 )/(a02 + ta-2 )
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and

(2.6) s = (ao2 +ta-2)-l

Moreover, it can be shown that Y(s) is a Brownian motion with zero drift in the -s

scale originating at (yo,so) = (j0,o0), i.e.,

(2.7) E[dY(s)] =0

(2.8) Var[dY(s)] = -ds

Note that as t increases from 0 to cc, s decreases from so to 0.

The posterior risk in stopping at Y(s) = y, is given in the first version, which we

shall refer to as Problem 1, by

min(ko, E[1U2 IY(s) = y]) = min(ko, ki (y 2 + s)).

In the second version or Problem 2, the posterior risk can be calculated to be

m:.(ko, E[jIAi JY(s) = y]) = min(ko, k2
1/22Ge(Ys-1/ 2))

where

(2.9) Gi,(a) = 2{1(a) + a['(u) - 1/21)

and 4 and 4ý are the standard normal density and cumulative. Thus the stopping risk

in Problem 1 is given by

d11(y,s) = cot + min(ko, ki(y 2 +s))

(2.10) = coa2 s-1 + min(ko, k1 (y2 + s)) - co 2 o'02

and in Problem 2 by

(2.11) d2 1(Y, s) = coO'2 s- 1 + min(ko, k2S 1 / 2 Gle(YS-1 1 2 )) _ coa2a 02.

For a stopping cost d(y, s) there is a corresponding optimal Bayes Risk p(y, s), given

that we have reached Y(s) = y, and proceed optimally thereafter. But then it pays to
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stop if p(y, s) = d(y, s) and to continue if p(y, s) < d(y, s). But this means that the

optimal stopping time S corresponds to a procedure which stops when (Y(s), s) reaches

a stopping set S = {(y, s) : p(y, s) = d(y, s)}. That is, the optimal procedure is one of a

class of procedures which is defined by a set S and its complement C = Sc.

Any stopping time S, optimal or suboptimal, which is defined by a subset 's of

{(y,s) : s > 0}, has a corresponding Bayes risk given by

(2.12) b(y,s) = E{d(Y(S),S)IY(s) = y}

which satisfies the ordinary boundary problem

(2.13) 1byy(y,s) = b,(y,s) for (y,s) E C

and

(2.14). b(y,s) = d(y,s) for (y,s) E S

The extra condition that determines the optimality of S is

(2.15) by(y,s) = d,(y,s) for (y,s) E aS

where OS is the boundary of S. The pair (S, b) which satisfy (2.12) - (2.14) represents

the solution of the free boundary problem (FBP) and relatively mild sufficiency conditions

under which the solution of the FBP represents the solution of the optimum stopping

problem, are discussed in Chernoff (1972). To paraphrase those conditions, they state that

if the stopping rule determined by the solution of the FBP can't be improved trivially, the

stopping rule is optimal.

Since the stopping set S does not depend on the initial value of (y, s), i.e., (p0, o0),

we see that the set S represents a solution which applies simultaneously for all (y0, a0).

The remaining parameters co, k0 , ki in Problem 1 can be incorporated into one essential

parameter by use of a transformation of the form

(2.15) Y* = aY, s* = a2s

which leaves E[dY*(s*)] = 0 and Var[dY*(s*)] = -ds*, and by noting that the solution

S of the FBP is not altered when d is multiplied by a constant or modified by the

addition of a solution of the heat equation.

5



Now let k,/a 2 ko = 1, i.e.,

(2.17) a = (k1 /ko)1/ 2

Then

(2.18) d1 1(y, s) = kod, 2(y', s') - c0o-2ao 2

where

(2.19) d12 (y,s) =cIs-1 + min(1,y 2 + s)

and

(2.20) c, = c0o 2kil/k

and the solution of the FBP or optimization problem for d12 can be converted simply

to that for d11 . Note that we now have a FBP with only one parameter cl to replace

/'0, o-0, co, ko and kj.

A similar transformation works for Problem 2. Here we have, with a = k2/ko

(2.21) d21(y, s) = kod 22(Y., s-) - cooa2a-o2

where

(2.22) d22 (y,s) = c2 s-1 + min(1,s 1 / 2Ge(ys-1 / 2 ))

and

(2.23) C2 = co- 2 k2/k0

Later we shall see computational advantages for deriving asymptotic expansions by

subtracting special solutions of the heat equation from d 12 and d22 .

3. Character of the Solutions

Because of the symmetry of the loss functions as functions of pi, S, the optimal S

and $C = C are symmetric in y. These sets are adequately described by two curves, an
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inner and an outer curve given by ji(s) and j.(s) respectively as indicated in Figure

3.1 for 3 values of cl. The inner curve bounds S,, the subset of S on which one declares

bioequivalence and the outer curve bounds So, the remaining part of S which leads to

the declaration of nonequivalence. In between is the continuation set C.

/N C

-1.5 -0.5 0.5 1.5 -1 -0.5 0.5 1. -1.i -0.5 0.5 1.5

Y Y Y

c small c medium c large

Figure 1. A schematic representation of the optimal boundaries of Problem 1, for various

values of c.

Since S is monotone increasing in c there are several critical values, depending on

which problem r'e consider, where S changes character somewhat. For c < Zo the outer

curve does not close and (0, s) E d for arbitrary large values of s. If we let i, and g.

be the values of s where ýj and ýo are zero, then we define Zi as the infinimum of

those values of c for which ii = 9,,. In Problem 1 all points of y2 + s = 1 with the

possible exception of (0,1) are in C. In Problem 2 the same holds for the points where

S1/ 2 Gi,(yS-1/ 2 ) = 1, with the possible exception of (0,7r/2).

Hwang tabulated 9, and 9, as functions of c and calculated E-o and i,.

He found, for Problem 1, 7i • 0.75 and Z1o ; 0.057. Our bounds indicate that for
1/21/

0 -< c _ 1, Si_ > cx , and for 1/4 < c _1, io _ cl/(2c•/ 2  1). These imply i, : 1

and Zlo < 1/4. Other bounds yield Zli _ (2/ire)l 2 = 0.484 and E,,o > 0.0554. Two of
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these four bounds are poor, and one is good.

Similar results apply for Problem 2 where Hwang calculated c2i Z 0.75 and Z2o ;

0.0518. We derive i2i >_ (c 2/4o) 2/3 for 0 < c2 _< 7r/4 and -2o _< C2/(3,1/ 3 2 3 _ 1) for

27r/27 < c2 _< 7r/4, where o0 = (2r)-1/ 2 . We also find (7r/8e)i/ 2 = 0.380 < Z2i :5 7r/4 =

0.785 and 0.0498 < Z2o < 27r/27 = 0.233.

When c becomes large tCie set C shrinks but never completely vanishes. However,

in the discrete time version of the problem, the effective C shrinks still further and for

sufficiently large cost of sampling it may pay not to take observations no matter what

the normal prior distribution is. In particular the region near the points (y, s) = (±1,0)

representing very large values of t, and hence of large observed sdmple size, disappear

from C in the discrete time version of the problem.

This is borne out both, by Hwang's coarse approximations to the solutions of the free

boundary problem, and his illustration of the discrete time correction based on the solution

of the continuous time version.

4. Solutions of the Heat Equation

Ir this section we will concentrate mainly on separable solutions of the heat, equation

which are of the form u = sn /2Hn(ys-1/ 2 ). For these solutions H, can be expressed

in terms of confluent hypergeometric functions which can be represented in various forms.

In particular we will present power series expansions for odd and even solutions. Also, for

nonnegative intcgers n, we present representations for H,(a) of the form

(4.1) G,(a) = P.(C)ý(a) + Qn,(a),(a)

where a = ys- 1/ 2 , and Pn(a) and Q,(a) are polynomials in a For negative integers

n we will express the H,,(a) in terms of ¢(a) and

(4.2) J(a) = e_,2/2 j eZ2/2dx

Finally we shall present a representation appearing in Goursat (1942), and remark on a

form of the solution useful for asymptotic expansions for large s.

In general, because of the relation between the heat equation and Brownian motion,

one form of solution of the heat equation can be derived by assigning a "heat source" h(y)
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to S= {(y,.) •s = 0}. Then we have

(4.3) U(Y,'s) = j jW( Y h(w)dw = Eh(y +TO Eh( v+ )

where C(W) = N(O, 1), provided h has no serious singularities and does not grow too

rapidly as z - oo. We shall later examine this form when h(z) = z" and I1zI for

nonnegative integer n.

If

k4.4) u(y,s) = s'/ 2 H.(a),

is a solution of the heat equation uyy/ 2 = u., then

(4.5) H"(a) + alH'(a) = nH,(a)

Assuming Hn(a) is an even function of a with the expansion

00

(4.6) Hne () "E Cn'a 2

j=O

with cn 1, we have, equating coefficients in (4.5)

Sn- 2j +2 1 H [- +(j- 1)]

(2j)(2j - 1) j[ + (2 _ 1)] ~J-1

and thus

(4.7) Hn,(a) = 1 a2 )

where

fix 0(0 + 1) X2  3(3+_1)_... (#_+j-_)xj
(4.8) F(, 7;x)=1+--+ - + .. +(4.8)~ ~ F/,; )=1+/1! -'(-y + 1) 2! " Y3(3y + 1) ... (-t + J- 1) j!+"

Similarly for the odd function of a with expansion
00

(4.9) Hn.(a) = ,2j+

j=O

with cno = 1, we have

n 2 1--) + (j- 1)] *
(4.10) C -,J -2 *[1 +(-i cn,-1

9



and

(4.11) H,.(a)=aF --- a,•

In Tables 1 and 2, we list the coefficients for various integer values of n and j. In

these expansions there is no need for n to be an integer. Incidentally, it is easy to see

that the derivative of a solution of (4.5) is also a solution for a lower value of n. That is

H(3)(a) + aH"(a)(4.27) = (n - 1)H'(a).

It should be noted that if H,(a) is even then H(c(a) is odd and vice versa.

We now introduce an alternative view of these separable solution. Let h(y) =y"n!

for y > 0 and 0 for y _ 0 with n > -1. Then u(y,s) = s"/ 2 G,(a) where G,(a)

is a solution of (4.5) and is given by

(4.12) Gn(a) = -.. 4(e)(a + E)"de = -.. 4(a - ,)n df

Symmetric and odd solutions of (4.5) are given by

(4.13) Gn,(a) = G.(a) + G.(-a)

and

(4.14) Gno(a) = G,(a) - Gn(-a)

respectively. These correspond to h(y) = IyIn/n! and h(y) = sgn(y)lyl"/n! for all y.

Also GC'(a) = G,,-.(a) for n > 0. By integration we see that

(4.15) Go(a) = ,(a)

and hence

(4.16) Go.(a) = 2[4(a) - 1/2]

while

(4.17) Go,(a) = 1

10



Also

(4.18) Gj(a) = O(a) + a4(a)

Using the fact that G.+ 1 (a) = f G.(a)da and G,(a) -- 0 as a --- -0 it follows that

for integer n > 0, Gn(a) is of the form (4.1) where Pj(a) is a polynomial of degree

n - 1 and Qn(a) is a polynomial of degree n. It is easy to see that Pn(a) and Qn(a)

are alternately even and odd polynomials in a of degree n - 1 and n respectively with

leading coefficients 1/n!. Also for nonnegative integers m

(4.19) G2,,e(a) = Q2.(a)

(4.20) G2 .+I,o(a) = Q2 .+I(a)

(4.21) G2 .,o(a) = 2{P 2.(a)¢(a) + Q2r(a)[Zb(a) - 1/2]}

(4.22) G 2m+i,.(a) = 2{P 2.+i(a)4i(a) + Q2r+i(a)[4'(a) - 1/2]}

Thus, for positive integer n, sn/ 2 Q"(a) is a solution of the heat equation which is a

polynomial in s and y of degree n in y. For example

S°QO(a) = 1 ,

s1/ 2Qi(a) = s1/ 2 a = y

and

SQ 2 (a) = S(a 2 + 1)/2 = (y2 + s)/2

Another way of looking at Qn(a) is that

(4.23) Q,(a) = Gn(a) + (-1)"Gn(-a) = 1E(a + W)n
n!

where £(W) = N(O, 1). Thus, for integer n > 0

Qn(a) = ](n)(2j)!an-23

S2 2j! n!

(4f] 1 1 an-2j

=O (n 2j)! 2jj

11



In particular for n = 2m
1 1.3.5..-(nz-1)

(4.25) G2m,,(O) - Q2 m(O) - 1-3.5 ...(n -1)

Note that for n = (2m + 1)

G 2 m+l,e(O)-= 20(0)P 2 m+1(O)
20(0) Co• W_. 2 /2., 2md

(4.26) -(2+ )! j Wdw

Let v w w2 /2. Then
24(0) _-2•m,

G 2m+l,e(O) = (2m + 1)! e(2v)m dv

2'm! 20(0)G~ml,(0 = ¢()-(2m +; 1)! 1- .3 .5 ... (2m + 1)

and

(4.27) P 2m+1(0) = 1.3.5...(2m+1)

It is obvious that Gne(a) = Gne(O)Hne(a). Similarly Gno(a) is a multiple of Hn.(ck).

That multiple is clearly G'no(O) = G.-1,e(O), and Gno(a) = Gn-i,.(O)Hno(a).

The polynomials Pn(a) can be calculated in a number of ways. Direct integration is

one way. Using the equation G' (a) = GC -. I(a) which implies that

(4.28) Pn-l(a)q(a) + Qn-_(a)l(a) = O(a)[P.(a) - aPn(a) + Qn(a)] + Q'(a)@(a)

gives an equation for Pn(a) in terms of Pn- 1, Pn and Qn. We can equate coefficients

using the fact that Pn(O) or Pn(O) is known or that the leading coefficient is 1/n!.

Perhaps the most efficient method is the following indirect one which yields P(,(a) as the

byproduct of an asymptotic result.

Since

n!Gn(-a) = jOv"•4(v + a)dv

= 4(a) j e- V2/2e-vavndv

= O 'a e__, e 2 /2, 2vndv
(4.29) +(1 Z(-1y2 . 1 2 .vnd . ,

j=O

12



we have, as a "-# oo

00

(4.30) Gn(-) ~ +)• n)!
j=O

For n = 0 this implies the well known asymptotic nonconvergent expansion as a -* oo

(.)(-a) 1 1 32.*,*"(-1)'( 2J -(2j+1)(4.31) ;
j=0

Using this expansion, it follows that the nonzero coefficients of n!Pn(a) can be calculated

as the first [(n + 1)/21 coefficients of the formal expansion of

(4.32) pn(v) - qn(v)a(v)

where

(4.33) a(v) - 1(-1)A !v-
j= 2j!

and

(n/21
(4.34) qn(v) = 2j

j=O j

The coefficients of Pn(a) and Qn(a) are listed in Tables 7a and 7b.

Because Go(a) = 4(a), G,(a) = O(a) is an even solution of (4.5) for n = -1.

But the even solution for n = 0 is the constant 1 and its derivative does not provide a

second independent solution for n = -1. However it is easy to see that that is furnished

by J(a), which is defined in (4.2), and is odd. Thus successive solutions, alternating even

and odd, for negative integer values of n, are derived from successive derivatives of 4
and J. The derivatives of 0 can be expressed by

(4.35) 0(m)(a) = Rm(a)4'(a)

where Rm(a) is a polynomial of degree m with leading coefficient (-1)m, and O(m)

corresponds to Ha(a) for n = -(m+ 1). In fact the Rm(a) are the Hermite polynomials

except for the factor (-1)m. Substituting in (4.5) we have

(4.36) R" (a) - aR'm(a) = -mR,(a)

13



and expanding Rm, for even m, as

(4.37) Rm(,a) - amja2j

We have

-[m + 2- 2j]
(4.38) am,, = 2j(2j - 1) am,)-

which implies that the amj/ano = (-1)jcj for even m. Similarly for odd m,

(4.39) R(C(a) = Ea,*ja2i+l

and

(4.40) a j = - -- - aj _

and a•,/a*0 =(-1)'c;. for odd j also.

For positive integers m, the coefficients of Rm(a) are proportional, with sign chang-

ing, to the coefficients of Qm(a). Since the leading coefficients of Rm(a) alternate

between +1 and -1 and those of m!Qm(a) are 1, it is clear that the coefficients of

m!Q(a) are simply the absolute values of those of the Hermite polynomials and

[m/2] M! 1

(4.41) Rm(a) = (-1)m E (-1)j 2 am•2j
j= (m - 2j)! j

We turn to J(a). As a--+0

2 a4  1 21 x2  x4
2- + 8 -. + + 8 +...]dx

a 3  a5
(4.42) J(a) " a - 3 + T5

This expansion coincides with that of H- 1,0(a) = aF(-1, 3/2; -a 2 /2) corresponding to

(4.11). For a -oo

J(a) C e(Z 2•a 2)/2dx -= e[(--u)' --0/2du

"- j e-au+u:1/2da

2

= -1 f e-v+v2/2U2 dv

•_•-I e- 1+ F_2 + •a .

0 .2 +"



(4.43) J(a) - a- 1 {I + a- 2 + 3a-4 + 15a-" +..

From (4.2) it is easy to see that

(4.44) (a)= 1 - aJ(a)

(4.45) J"(a) = -a + (a 2 - 1)J(a)

(4.46) j( 3 )(a) = (, 2 - 2) - (a3 - 3a)J(a)

Thus

(4.47) J(')(a) = S,,() + T.(C)J(a)

where Smn(c) and Tm(a) are polynomials, the coefficients of which evidently relate to

those of m!P.(a) and m!Qm(a) except for sign changes. Substituting in (4.5), we have

(4.48) T"(a) - aT.'r(a) = -mTM(a)

from which it follows that Tm(a) = Rm(a) because the leading coefficients coincide.

By formal differentiation of (4.43) we have, as a -* oo

(4.49) J(m)(Ci) ", (--1)'C•-'-1 (2j + m)! (2j)! _-2j

(2j)! 2jj

Thus the coefficients of Sm(a) are (-1)"-1 times the first [(m + 1)/2] of the formal

expansion of

where

(4.50) jM(V) = 2)!vj

j=O 2j

and

[-/21

(4.51) tM(V) E (-1) _j (2j)!
j= (M)5

15



Relating these expansions to those of (4.32) - (4.34), we see why the coefficients of S"(a)

coincide, except for sign, with those of m!Pm,(a). The coefficients of Rm. = Tm and Sm

are given in Table 8.

Comparing Gne, G.., J(") and 0(m) with the confluent hypergeometric functions,

we have

Gne,(c,) = Ge(o)F(j 1 ~2
n-1 3 a2•

Gn0(a) = Gn-l,.(O)aF( 2"' 2;-

J()(-) J(n)(O)Fn21,2; 2- a) for n odd

J("-1)(c) = J(n)(O)aF(n 2 1 3 2 2)

0(n)(.)= (n+1)(O)aF n+2 3 a 2'- "

(4.52) O1(nia) - O~n I(O)F n2 '2' c 2)

where

1
G 2m,e(O) = m!2m

2¢0
G2"O'(0 =

1.3.55... (2m + 1)

JP2m+O)(o) = (-I)"'

m!2m
(4.53) o•2m)(o) = - (-1)'0o

1.3.5 .... (2m- 1)

and '00 is an abbreviation of 0(0) = (27r)- 1/2 .

For our asymptotic expansions for large s in Section 6.3 we will use a variation

of Equation 4.3 involving functions which behave like h(y) = y- 2 log y2 for large y.

Equation (4.3) corresponds to the effect at time s of a distribution of heat given by h.

The variation we propose,
w - y + ylh(w)dw

U(Y' S) S- 1/2 [0{ ' -Y) + 0~(' )] - 0 hw

(4.54) 1 [O(' - a) + 0(a' + c,)1 - 20(a) h(v',rs)dor'

16



corresponds to a distribution of heat analagous to a source and compensating sink at

y = 0. This variation permits us to deal with the behavior of h for large s when a'
is small. Oddly enough, the behavior of h for small values of y is not important and h
can be modified to be zero when ly[ !_ 1 with little overall effect. It is easy to see that

for large s, we obtain

1/2h(2)(SI/2a) + S -(4)(sI/2a) + -h()(S/a
(4.55) u(y, s) '- hsa + 2 8 +h 48()(S12a8 48

and

1/2L (3)(31/a) + 82 2a(4.56) ~,y )- 'sa + s+ h~)s
i~ 8

Finally, a representation of the solution of the heat equation from Goursat (1942),
which was used in Chernoff (1965a) to justify the asymptotic expansions for large s, is

reproduced below. We have

(4.57) uy, = B( (- )-1/20 ((S -2' ) [u(y',s1)dy1 + I u'ds1 - [-u y - Y,][d.9]

where the integral is taken along a (Yl, s I) path B which starts at si = s with a value

of y1 less than y, passes through points si < s and terminates at s, = s with a value

of y, greater than y. The region that B circumscribes is one where u satisfies the

heat equation. Equation (4.3) may be regarded as a limiting case.

4.1 Tables.

We present some tables relevant to the solutions of the heat equation. In Table 1 we

present the even solution

(4.1.1) H,(&) = F -,j, ~ 22

and in Table 2 the odd solution

(4.1.2) Ho(a)=aFQ.n-1,3._a2 )2 2 2J

of

(4.1.3) H"(a) + at'(a) = nH.(a)

17



as power series expansions in a, with leading coefficient 1. These are related, for positive

values of n, to

(4.1.4) G.e(a) = G.(a) + G.(-a)

and

(4.1.5) G.o(a) G.(a) - C.(-a)

These appear alternately in Tables 3 and 4. Table 3 presents

(4.1.6) Q.(a) = G.(a) + (-1)"G.(-a)

and Table 4 gives the expansion for

(4.1.7) V.(c) = [G.(ci) + (-1)"+ Gn(-a)]/20o.

For negative values of n, Hn, and Hn. are related to J(-" )(0 I) and (-i)(- ),

for which the expansions appear in Tables 5 and 6.

The relations

(4.1.8) Gn(a) = P.(CO)(aW) + Qn(a)$(c)

(4.1.9) J(")(a) = Rn(a)J(a) + Sn(a)

and

(4.1.10) 0(n)(.) = R.(a)O(a)

where P,, Q,, R, and Sn are polynomials in a, lead to the Tables 7 and 8 for

P,, Q,, n!Pn n!Q,, R, and Sn. Note that the coefficients of P. and Qn are the
absolute values of those for Rn and Sn, and that the (-1)"R. are Hermite polynomials.

Also Qn(a) is a solution of (4.1.3) and thus s"/ 2Q,(O) satisfies the heat equation. The

asymptotic expansions, for a -- oo,

(411)Gn(-Cf) -, ) 0'-1)(2i + n)! C,-(n+l+2j)
n! E2jj!

j=O
and

(4.1.12) J(a) , a-I {1 + C- 2 + 3cr- 4 + 15a- 6 +I...}

give rise to Table 9 which presents the asymptotic expansions for large a of Gn(-a) and
J(n)(a). Equation (4.1.10) is adequate to deal with t(")(a) for large a, and Gn(a)

is described, for large a, by

(4.1.13) G,(a) = Q.(a) - (-1)"Gn(-a)

Finally, in Table 10 we indicate how Hne, Hno, Gne, Gno, j(n) and O(n) are related.

18



2r
Table 1. The coefficients a.,, of He(a) = a,,ra 2r

r--0

n\r 0 1 2 3 4

-10 1 -10/2 120/24 -1,680/720 26,880/40,320
-9 1 -9/2 99/24 -1,287/720 19,305/40,320
-8 1 -8/2 80/24 -960/720 13,440/40,320
-7 1 -7/1 63/24 -693/720 9,009/40,320
-6 1 -6/2 48/24 -480/720 5,760/40,320
-5 1 -5/2 35/24 -315/720 3,465/40,320
-4 1 -4/2 24/24 -192/720 1,920/40,320
-3 1 -3/2 15/24 -105/720 945/40,320
-2 1 -2/2 8/24 -48/720 384/40,320
-1 1 -1/2 3/24 -15/720 105/430
0 1 0 0 0 0
1 1 1/2 -1/24 3/720 -15/40,320
2 1 2/2 0 0 0
3 1 3/2 3/24 -3/720 9/40,320
4 1 4/2 8/24 0 0
5 1 5/2 15/24 15/720 -15/40,320
6 1 6/2 24/24 48/720 0
7 1 7/2 35/24 105/720 105/40,320
8 1 8/2 48/24 192/720 384/40,320
9 1 9/2 63/24 315/720 945/40,320

10 1 10/2 80/24 480/720 1,920/40,320
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00

Table 2. The coefficients a., of H.o(a) = Za""al+2"
r-0

n\r 0 1 2 3 4

-10 1 -11/6 143/120 -2,145/5,040 36,465/362,880
-9 1 -10/6 120/120 -1,680/5,040 26,880/362,880
-8 1 -9/6 99/120 -1,287/5,040 19,305/362,880
-7 1 -8/6 80/120 -960/5,040 13,440/362,880
-6 1 -7/6 63/120 -693/5,040 9,009/362,880
-5 1 -6/6 48/120 -480/5,040 5,760/362,880
-4 1 -5/6 35/120 -315/5,040 3,465/362,880
-3 1 -4/6 24/120 -192/5,040 1,920/362,880
-2 1 -3/6 15/120 -105/5,040 945/362,880
-1 1 -2/6 8/120 -48/5,040 384/362,880
0 1 -1/6 3/120 -15/5,040 105/362,880
1 1 0 0 0 0
2 1 1/6 -1/120 3/5,404 -15/362,880
3 1 2/6 0 0 0
4 1 3/6 3/120 -3/5,040 9/362,880
5 1 4/6 8/120 0 0
6 1 5/6 15/120 15/5,040 -15/362,880
7 1 6/16 24/1,20 48/5,040 0
8 1 7/6 35/120 105/5,040 105/362,880
9 1 8/6 48/120 192/5,040 384/362,880

10 1 9/6 63/120 315/5,040 945/362,880
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Table 5: J(")(a)=Eaa.,a
j=O

an0

n\ r 0 1 2 3 4 5 6 7 8 9

0 1 -1/3 1/15 -1/105 1/945
1 1 -1 1/3 -1/15 1/105
2 -2 4/3 -2/5 8/105 -2/189
3 -2 4 -2 8/15 -2/21
4 8 -8 16/5 -16/21 8/63
5 8 -24 16 -16/3 8/7
6 -48 64 -32 32 -16/9
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Table 9. Asymptotic Expansions for large a for J(')(a) and G.(-a)

G 3 (a) -. -(n+ )(anr -2r

n\r 0 1 2 3

0 1 1 3 15
1 -1 -3 -15 -105
2 2 12 90 840
3 -6 -60 -630 -7,560
4 24 360 5,040 75,600
5 -120 -2,520 -45,360 -831,600
6 720 20,160
7 -5,040 -181,400
8 40,320
9 -362,880

b,,,

n\r 0 1 2 3

0 1 -1 3 -15
1 1 -3 15 -105
2 1 -6 45 -420
3 1 -10 105 -1,260
4 1 -15 210 -3,150
5 1 -21 378 -6,930
6 1 -28 630 -13,860
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Table 10. Relations among N, J, 0, G and T

fi2~ =..j( 2 m-l)/a2( 1-) H2m,e = Ia2mIG2,,~, = ia2mIQ2,n

H-.2m...,O = J"/2n H2.+1.O = la.GH0= Ia2mIQ2m+I

H-m-,-= 0(2-f) /b2m~O H2m-,n1. = Ib2mIjG2m-...~24'o = Ib2mnIT2wa-1
H..2m,O =.( 2 m-1) /b 2 .O H2~,nO= bGm-.2 = Ib2mtT2.

n 0 2 4 6 8 10
a,, 1 -2 8 -48 384 -3,840
b1, 1 -1 3 -15 105 -945

a2m =(-1) m 2m m! b~j,, (-1)mIIM.u! =(-1 )m(l 3. (2m - 1))
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5. Bounds

In this section we derive some qualitative properties of the optimal sequential rules

for Problems 1 and 2. Most of these establish the bounds described in Section 3. First we

have

Proposition 1. The optimal continuation set C decreases with cl in Problem

1, and with c2 in Problem 2.

Proof: Let d 12 ,p and C correspond to cl and d•2 ,p , and C* to c• > c and let

(y, s) E C*. Then there is a stopping rule S < s for which

dt2 (y,s) > E{d12 [Y(S),S]IY(s) = y}

= E{d12[Y(S),S1 + (c; - ci)S-'Y(s) = Y}

_ p(y, s) + (c; - CO •

and

dl 2(Y, S) = d 2(y, S) - (c4 - COS- > P(ys )

Hence, (y, s) E C and C D C*. The same proof applies for Problem 2.

We state two related propositions and a more general lemma, on which the proofs of

the propositions are based.

Proposition 2. In Problem 1 with stopping cost d12, the optimal continuation

set C1 contains {(y,s): y2 +s=1, s>0, yjO0}.

Proposition 2*. In Problem 2 with stopping cost d2 2, the optimal continuation

set C2 contains {(y,s) : s/ 2 Gle(ys- 1 1 2 ) = 1, S > 0, y # 0).

Suppose that yo(s) is a differentiable curve along which d(y, s) is continuous and

differentiable, but along which the right hand and left hand derivatives with respect to

y, d+, and d. are defined finite but unequal.
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Lemma 1 For £(W) = N(0, 1), E{d[yo(s) + WV6, s - 61 = dlyo(s), s] + Oo(dy -
d Y) V6 + o (v6).

Proof:

d[yo(s) + Ws/r, s - 6] = djyo(s - 6) + Wvr" + yo(s) - yo(s - 6),s - 6]

= d[yo(s), s] + [Wv•jdg + 0(6) for W > 0(vr6)

= d[yo(s), s] + [WV'i]d- + 0(6) for W < O(Vb)

Hence

Efd[yo(s) + WVý, - 61} = d[yo(s), s] + vX{dy j0 wOb(w)dw + d, 0 w(w)dw} + 0(6)

= d[yo(s), s] + OoV,,[d+ - d; + 0(6)

Note: Implicit in the proof above was the assumption, not clearly stated here, that d does

not grow too fast as y goes to ±00.

Propositions 2 and 2* are corollaries of Lemma 1. For Proposition 2, d.12Y = 0, and

d-'2 =2y for y2 +s=1 and y>O. While d- =0 and d+=2y for y 2 + S-
and y <0. In both cases - < 0 and the procedure of letting S = s - 6 leads

to a reduction of risk over stopping at (y, s).

For Proposition 2* we have for s11 2 Gle(ys- /2 ) - 1 and y > O, d42, = 0 and

d 1 = 2ý(ys-1/ 2 ) - 1 > 0 For y < 0, d- = 0 and d2 = 21(ys-1/2) - 1 < 0. Once

more we have d22Y - d22 < 0 in each case and the result follows.

Propositions 2 and 2* fail to determine whether the points (0, ii) = (0, 1) and

(0, S2) = (0, ir/2), where i/2 G1e(0) = 1, are, or are not, in the continuation sets. This

question is partially addressed by Propositions 3 and 3*.

Proposition 3. If cl < (2/ire)1 / 2 - 0.484, (0,1) E d in Problem 1.

Proposition 3* If c2 < (ir/8e)1 / 2 = 0.380, (0, ir/2) E C in Problem 2.
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Proof: With £(W) = N(O, 1), we have

{d,(W~b-,I1- b)}- =1-c + j min(1,W2 6 + 1- 6)qS(tv)dw

I

= cl + 1 + b{i + L'(W2 _ 1)4(W)dW} +Ob
= d(O, 1) + bf cl - 20(1)} + o(b)

Hence (0,1) E if c1 < 20(1).

d22(WVb, 7r - b) = C/-2 + min[l, (r _-)112G,.(WbI/2(7rb-1)

Since Gle(a) = 240(1 + a 2 /2) + O(a 2 ) for a --6- 0

E,{ d2 2 (Wi/i, • -)}-= d(O, /2) + 6 4{ -C 2 + Min(0, W2 + o(6)

-d(0, 7r/2) + I[4C2 + L w )~wd]+o6

Thus (0, v/2) E C if

n2 1 (W21
C2 < --- w - 1)0(w)dw = r(1) = V"7r/8e

From a slight perturbation of Propositions 3 and 3* it follows that Zli Ž_ (2/ire)i/ 2 and

c2i Ž (7r/8e)1/2. Upper bounds on Eli and 62i follow from Propositions 4 and 4.

Proposition 4. In Problem 1 all points (0,s) with 0 < s < c 1 /2 are in , if

0<ci_51. If c1 >1, (0,s)E, forall s>0, and Zli_< 1.

Proposition 4*. In Problem 2 all points (0,s) with 0 < s < (C2 /400)2 / 3 are in

j if 0<c 2 _<ir/4. If c2 >7r/4, (0, s) ES for all s>0, and hence Z2i_:ir/4.

Proof: For Problem 1, let 0 < s<S < c1 / 2 < 1. Then

d 12 (0,s) CIS- 1 +•S

but for all y

d 12 (y, S) > ciSj' + 81 > d 12 (0,s)
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since cls-1 + s is decreasing in j for 0 < a < c/ 2 . Hence it is disadvantageous to

continue from (0, s).

Ifc, >1 and O<sl <s, thenforall y

dl 2 (Y, sO) 2 d 12 (0,S)O = CIS, I +rmin(l, sl)

which is a decreasing function of sl. Hence dl 2 (Y,s1) Ž d 12(0,s) and (0,9) E S. It

follows immediately that Eli < 1.

For Problem 2, let 0 < 82 < 8 < (27rc)'/ 3 <_ r/2. Then

d 2 2 (0,S) = C2 S - I + /-7"SI/2

since Gle(a) assumes its minimum value of 2q00 = -/7 at a = 0 and 2•00s1/ 2 < 1.

For all y
~V2- _>18 / 8/2 _> d22 (0, S)

d22 (Y, 82) ? C2S2 + ~/7rSl2 > 2 (0s

since C28- 1 + x/2Ni1/ 2 is decreasing in s for s < (2irc2) 1/s. Once again it is

disadvantageous to continue from (0, a).

If c2 > 7r/4 and 0 < S2 < S, then for all y

d22(y,S 2 ) _ d22 (0,s 2 ) = c2S21 +min(l,V/27s•/2 )

which is a decreasing function of S2. Thus d22(y,S 2 ) 2! d22(0,s) and (0,a) E 5, and

consequently Z2i < 7r/4.

Some explicit bounds for jIo and i2o are given in Propositions 5 and 5".

Proposition 5. For 1/4 < cl _< 1, (y,s) E S if 8 >_ cl/(2cl"2 - 1).

Proposition 5*. For 27r/27 < c2 < 7r/4, (y, s) E S if

S >_ C2/(3C2 -0
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Proof: Let S be an arbitrary stopping procedure (starting from (y, s)) for Problem 1.

Let E{X; A} represent the contribution of the event A to EX, i.e., fA X(w)dP(w).

Then

BI = E{d1 2 [Y(S), Sl} = E{d1 2 IY(S), SI; S 1} + E{d1 2 [Y(S), S]; S < 1}

> (cs-1 + 1)P{S _> 1} + 2c'12 P{S < 1}

sincefor s>_SŽ1, d1 2(y,S) =cIS-1 +1, andfor 0<S<1, d12(y,S) 2! cIS-'+S>_
1/2

As cl ranges from 1/4 to 1, ci/(2c1' 2 - 1) decreases monotonically from oo to

1 and hence s > 1, and d 12 (y,s) = cIs-' + 1, and

B1 - d12(y, ) > (2c' / 2 -_ S - 1)P{S < 1) > 0,

and hence (y, s) E S.

Let S be an arbitrary stopping procedure for Problem 2. Then

B 2 = E{d22 [Y(S),S]} = E{d22[Y(S),S];S >_ r/2} + E{d22 [Y(S),S]; S < 4/2}

_ (c2 s- 1 + 1)P{S _ wr/21 + (27c 2 /27r)Q/pP{S < 7r/2)

since for s > S > 7r/2, d22(y,S) Ž! c2S-' + 1 and for 0 < S < 7r/2, d22(y,S) >

c2S- 1 + S1/2 GIe(O) = c2S- 1 + 20oSl/ 2 > (27c 2 /27r)/s 3 .

As C2 ranges from 2727 to 44, C2/(31/c 03  - 1) decreases monotonically from

oo to 7r/2 and hence s > 7r/2 and d22(y, S) = c2 s- 1 + 1, and

B 2 - d22 (y,s) Ž_ [(27c 2/27r)1/S - c2 s-1 - 1]P{S < 7r/2} >_ 0

and hence (y, s) E.

As a consequence of Propositions 5 and 5*, it follows that j1o • cl/(2c]/ 2 - 1) and

i20 <_ C2 /(3c o342 3 - 1), Zli _< 1, Z2i < 7r/4, Z1o _< 1/4, and Z2o _5 2ir/27.

In Propositions 6 and 6" we derive inner bounds on C for Problems 1 and 2 for cl

and C2 sufficiently small. These incidentally imply that

Z1o > C1 3 {4 <<max (a+ 1)[1 - (a) =0.0554
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where

J'(ao) inf J'(a) = -0.2847
0<0.<00

and

a 0 = 2.124.

Also}- Also 4 2.(a)[1 _ j 0.0498-2o-> C23 =j27 10<max G

Proposition 6. For 0 < cI < c1 3 in Problem 1, the optimal continuation set

contains A1 which consists of the set of all (y, s) for which Jai < a0 and

1 + {1 - 4c3(1 - a2 )1 /2 11 -J(a)I(Qo)]}1/2

2(1 + a 2 )

Proposition 6*. For 0 < c2 < c 23 in Problem 2, the optimal continuation set

contains A2 which consists of all (y,s) for which jai < ao and a > s+(a)

where s+ (a) is the larger of the two positive roots of

S3 / 2 G ie(a) - S + c2 3 [1 - J'(a)/J'(ao)] = 0

Proof. Let u(y,s) -- 1 + cis-1 J'(a)/J'(ao), the second term of which imitates cls- 1

when s --+ 0 and a = a 0 . Our proof involves showing that u < d 12 on a set A, and

u = d12 on the boundary of A. Thus u is the Bayes Risk corresponding to the procedure

defined by C = A. Since p(y, s) < u(y, s) everywhere, then p < d12 whenever u < d12

and hence the optimal continuation set Cd D A. Now C, is monotone decreasing in cl .

But our set A is monotone increasing in cl. Hence Cd must contain A1 = A(c13 ).

Since all points (0, s) for which s > 1 are included in C1 , it follows that Z1. 2! C13.

Figure 2 helps to illustrate the details of the proof, which follows.

The two curves y = aos and y2 + a = 1 intersect at (:yo,so) where so =

(a2 + 1)-1 < 1 and y0 = aoso . The set B, = {(y,s):y 2 s1, 2 < a0s) will be

part of A. The two points (±yc,so) will be connected by a curve segment s+(y) which

together with s_(y) are the roots of

Q(s) = (a2 + 1)s2 _ S + c [1 - J'(a)/j'(ao)J = 0.
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These roots are real when the discriminant

D = 1 - .,,2 + 1)CI[1 - j'(a)/J'(a0)J > 0

for lal <-O. That is the case because 0 < C1 < C 1 3 . Moreover 0 < D < 1 and the roots

s+ and s- are given by (1-±-D1 / 2 )/2(1+a 2 ) satisfying 0 < S_ < S+ <(a 2 +1)-1 < 1.

Let A=B, UB2 where B 2 ={(y,s):Y+s<l, y 2 <as,s>s+}.

6 u-cd. ..d u ,

O o O*

o-c 0< a-

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

Y Y Y

c, = 0.03 small c, = 0.04 medium cI = 0.05 large

Figure 2. Regions bounded by laoI = a, u = d12, and Q = 0 for Problem 1 for 3

values of cl.

Now we show that d12 - u > 0 on A with equality on the boundary. On B,

d 12 - u =- cIs- [1 - J'(a)/J'(ao)] > 0

and on B2 , where a > a+

d1 - u = S-1 Q(s) > 0.

Equality on the boundary of A is apparent. Thus, p(y, s) < u(,, s) < d(1 , s) on A, C, D

A. As c, increases subject to 0 < c1 < C13, D and s+ de,-rease, enlarging B2 and

A which approaches A, = A(c13 ) but C1 decreases. Hence C, D A, = A(c 13 ) D A(c,).

Proposition 6 follows.
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Our proof has incidentally shown that Cd includes all points (0, s) for which s > 1

if Cl < c13 and hence 21o C C13.

The proof of Proposition 6* proceeds along similar lines. We use the same solution

u of the heat equation with cl replaced by c2 . The two curves y= as and

s1/2Gle(ys-12) = 1 intersect at (-y*,s•) where 0 < so = [G,,(a*)1-2 < 7r/2 and

y• = a 0s 01/2. For the time being, let us assume that these two points are connected by a

curve s; on which

Q*(s, a) = s3/2Gj,(c) - s + c2[1 - J'(a)/J'(ao)] = 0

where s+l 2 (s 1 "y ) < 1, and Q*(s) > 0 if s > s•, s1 / 2 Gle(a) < 1 and kkl < ao.

Then we let A* = Bj' U B2 where B = {(y,s) : s1/ 2 Ge(ys-"/ 2 ) > 1, y 2 < aCs}

and B2 = {(y,s): S 1 /2 Gle(ys- 1/ 2 ) < 1, y2 < •o2S, s > s}. On B;, d 2 - u -

c2 s-1 [1 - J'(c)/J'(ao)] > 0 and on B,,d 22 - u = s-1 Q*(s,a) > 0. The rest of the proof

follows as in that of Proposition 6, provided sý. is nonincreasing in c2. It remains only

to demonstrate the existence of the desired sý.

For each fixed a in (-ao.ao), Q*(st,a)>0 at st=1/GIe(a). Also

0Q" _ 3smG()
aQ * 3 1/ 9 s lP ,(a) - 1 > 0

2s

for s > s2 = 4/9G2 _(a). But

-4 + 2[1 'a
Q*(s,1a) = 27G 2 (a) + c2 - J'(a)<

for c2 < c23 by definition of C23. Thus there is a value sý(a) = sup{s : Q*(s,a) =

0, s2 < s < s*}. Since aQ*l/s > 0 and 9Q*I/a = 2S3 12 1[c(a) - 1/2] - c2J"(a)/J'(ao),

for s > s2 and lal < a0 , s4 defines a curve and one for which sZ is decreasing in c2 .

6. Asymptotic Expansions

This section has 4 subsections devoted to asymptotic expansions of the optimal bound-

aries and risks for Problems 1 and 2 when s is small and when s is large. Most of our

derivations will be formal, since the argument required for rigor are complex and have been

outlined elsewhere for similar problems, e.g., in Chernoff (1965).

37



6.1 Problem 1, s small.

The boundary of the optimal stopping set is near y = ±1. To simplify the calculations

we will consider solutions of the heat equation of the form u(y - 1, s) + u(-y - 1, s) where

u(-y - 1, s) will have a negligible effect near y = 1. In effect, for s close to 0 we have

transformed the problem to that of dealing with dI 3 (z, s) near z = 0 where z = y- 1

and d13 (z,S) = d12(y,s), i.e.,

dl 3(z,s) = CIS-1 + min(l, z2 + 2z + s +)

(6.1.1) - cIs- + 1 + min[0, s(# 2 + 1) + 2s'/26]

and 6 = zs-1/ 2 . For further convenience we subtract several solutions of the heat equation

from d13. First we subtract cls- J'(8Y ) to reduce considerably the unpleasant effect of

the s-1 singularity when s and # are small. To make the remaining term more

symmetric in z, we subtract 1 + s 1/2# + S(#2 + 1)/2 and we have

(6.1.2) d 13(z,s) = CIs-1 J'(#) + 1 + S1/ 2 # + S(# 2 + 1)/2 + cld 14 (z,S)

and

(6.1.3) d14 (z,s) = S- [1 - J'(1)] - cjI isl/2# + s(# 2 + 1)/21

We will seek approximations to inner and outer boundaries Pi and P., that we

assume are close to y2 + S = 1 in the original variables, and a solution of the heat

equation u so that u and Ou/a8 match d14 and d14 6 = (9d14 /490 on both boundaries.

With an expansion for the boundaries of the form

(6.1.4) 8 - 2 _ 1 + as + a2S2 + a3S3 +

we can expand d 14 and d146 and appropriate versions of u and up in powers of s.

Letting

v = sgn[s1/ 2/3 + s(1 + /22)/2]

we have

(6.1.5) d14- [182--'#4 +'6 _058 .. cIv [S/2#@+S(#2+1)/2

38



(6.1.6) d140 1 20 4# + ± 8  6
1 3 15 105

Noie that for small s,

(6.1.7) S1/2,3 + S('82 + 1)/2 =S ~1-4a,] + 3 [a, -2a2] +S 4 [a? + 2a2 - 4a3] +8 4"8

and hence,

(6.1.8) v = sgn(l -4aj)

Now we have

d14 + S•F-S 2 [LI +a 12 + 1 + c- 1
4 2 4-8 2 4 12 ý- O--0ra3 ala 2  02 1 a, 1 -I (2G2 - a,

[2 2 12 8 1 160 26880 + cT-V 4 +

140 =- 1[1 6cl 1 2 a 8 0 -
1 1 -I+I s

(6.1.10) +S a3 - 2. a2 - jal + 1601 a 1680o

At this point we introduce a first approximation to the optimal solution of the heat

equation which will match d14 and d14t, on the inner and outer boundaries determined

by appropriate terms (aui,ai,2...) and (a01,a2,....) with al > 1/4 > a,. so that

vi = sgn(1 - 4ali) < 0 and vo = sgn(1 - 4a,,) > 0. Let

(6.1.11) ul = ris-1 / 2J(/) + r 2

with

(6.1.12) u - rs-1/2J'(3).

Expanding, we have

u1 r [ 2 - 1 r] +rIs[:ILI+ 1] + 7 1 S2 [-7.a + .- ]

r~2,
3 -- a r + L32 + a(6.1.13) + is3 L + + s 6+• +'
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-1/ 1s 2 -,+ + 2 _aL2 + L...
(6.1.14) ulp = ris 1 +- +-+S +I 960

1 4 1 2 4 8  12 4 12 960] f
Matching coefficients alternately with d14B, and d 14, we have

(6.1.15) r -1

and

(6.1.16) r2 = -1/4

We may also proceed further after noting that

d1r I 1 J+S [21a,( (1 +Cj' 1 Cjý'\]
T1-+ 4 + 2 4+ -2' 960 8 I

(6.1.17) +S3 +a 2 1+ . -a, 1+-- + -T 0 +""
12\ 4 2 '240 4) 26880J

and

1 C I-v
(6.1.18) + S [as-!-I-al( 4 +

448 2 224-0

By adjoining to u, the solution (of the heat equation)

(6.1.19) U2 = -r 3ss/2# + r4 s(1 + #2)

with

(6.1.20) U20 = -r 3 Ss1/2 + 2r 4s#

we match the coefficients of s1/2 and s in d14,6 - u1, - u2, and d 14 - U- U2

We have

(6.1.21) U2 r.[2.+r4] +s2[a]_s + [4 ]_ +Sa2rs+ alr_41+.

(6.1.22) U2-= --- 1/2{ sr-+-S2r4-+ S3+Sar4 +...}
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This leads to

(6.1.23) r 3 =al+1 + -+cv
12

and

(6.1.24) 13 1

But the first equation represents two equations depending on v, the sign of (1 - 4aj).

It stands for
1 -

(6.1.25) r3 = al, + 2-
1 1

(6.1.26) r3 = alo + I + c1

or

(6.1.27) alo = al - 2cj 1

At this point we have expressed a10 , r 3 and

1 r 3  -ali 1 c1-1
(6.1.28) r4 = - 2 48 2

in terms of an undetermined parameter ali > 1/4. Now we introduce

(6.1.29) U3 = -rs 3/2 (6 + + + r 6 s 2 (1 + 2/92 + ••

with

(6.1.30) U3 , = -rss 31 2 (1 +P2) + 4r6s 2 (0 + -i)

Expanding along the boundaries we have

(6.1.31) U3 = s2 + r 6] + S3 1 +2 2+4 ] +...

and

(6.1.32) U30=S1/{rs2 +S3 [L5+2r6] +-}j
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Setting the coefficients of s2 and s31 2 in d14 - uI - u 2 - U3 and d14,6 -ui - U28- U30

equal to zero, we have

(6.1.33) +a2 +a, a + 2 ) + -T'J + = + r6

and

1 cj1 v

(6.1.34) a 2 - -- - r4 = r5•
120 2

Considering that a, and v can take on two distinct values in (6.1.33) and r3 ,r 4 ,r5 and

r6 are restricted to single values, it follows that

(6.1.35) a 1  CI r3 a l o (1 C LI r3( 6 1 3 ) L -+ a , i ( 4 2 + 8s ali 2- +4, 2 8 a ILO - .

Since al, - alo = 2cj' and (a2i - a2o) (aj, + a1o)2C" 1 = 4(a1, - cj 1 )cj', it follows

that

(6.1.36) r3= 1/3,

and

(6.1.37) r4 = 7
48

1(6.1.38) ali = - + c;-

and

(6.1.39) a,, = - c

From (6.1.34) it follows that

(6.1.40) a 2 i - a 2 o -C 1 I

Now we introduce

(6.1.41) U4 = -r78'5/2(p + 2#3 + 1 35) + rs S(1 + 3,62 + -4 +•1•#6)

215
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and

(6.1.42) U,6= -r 7 s 5 /2 (l + 2#2 + 1 #) + rss 3(60 + 4#3 + 2 05)

Expanding along the boundaries we have

(6.1.43) U4 = S(L +,r) +...

and

(6.1.44) ,6 = -S-1/2 {r7S3 +...

Matching coefficients of s3 and s5/2 in d 14 - U1 - U 2 - U3 - U4 and its derivative with

respect to P, we have

a, a 2  (1 cT~'\ 1 -cv\ 1 (a 2r3 + N
+~~~- a2 

-i 
- +,

2 (24 2 ) + 240 4 26880 2 2

(6.1.45) - ( -+ L±_ + )= 1 7 + r 8

and

(6.1.46) a3 -- 4T + a, 1 2 + a Ilr4 - L+ 2r, r7

Since the rj do not depend on whether we use aji or ajo, the equation (6.1.45) implies,

with some algebraic labor,

31
(6.1.47) 

1=
80

which combined with (6.1.33) and (6.1.34) yield

(6.1.48) a2i- , 2

4 2

(6.1.49) a2 o 1 + -C

4 2

and

167 c&"2
(6.1.50) 

r6 6 - 2

960 4
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Applying (6.1.46) to aji and ajo, it follows that

1 -1
(6.1.51) a3i 4 a3o - C1

and r 7 and rs can be evaluated in terms of a 3o. Thus far we have for the inner and

outer boundaries

(6.1.52) ii= gi-1=-{ 1+ (1+C-1)s+ (1 ) 2 +

(6.1.53) o=g 1 1 T)S+

which compare with g2 + s = 1 where

(6.1.54) g=(1-s))-/ 2 =1 _ l + Is+ s2 +-5S +.

The approximation to the optimal risk given by u = u1 + u2 + U3 +... is

-- 1z -7 (S + z 2 )
4 3 48

(6.1.55) To- - 1-6 + 4 2  +2s

Deriving further terms becomes straightforward, but tedious, and requires considerable

care.

6.2 Problem 2, s small

In Problem 2, the boundary is also near y = ±1 when s is small, and once again

we translate to z = y - 1. We have for large jaj

Gl.(a) = 2[0(a) - jal(1 - O(Ial))] + kl

(6.2.1) l1l1+ (a) I2 W4 +

Thus for small s and y close to one, GI,(a) is very close to IaI and

d22(y, s) = c2 s- 1 + min[1, s11 2 Giý(a)]

(6.2.2) ; c2 s-1 + min(1,y) = 1 + z/2 + d 23(z,s)
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where

(6.2.3) d23 (z,s) = C2 s - Izl12 .

With the transformation

(6.2.4) z* = az, s*= a2 s, a = (2c 2 )- 1/3

we have

(6.2.5) d23(z,S) = (c2 /4)l/ 3 [d2 4(z',S*) + S,-I J'(zS",- 1 /2 )]

where

(6.2.6) d 2 4 (z,S) = s- 1 [1 - J'(#)] - Si/21,81

is symmetric in /6, and therefore easier to handle than d14.

We attack the asymptotic expansion for d24 near s = 0 and z = 0 by assuming

6 = als3/ 2 +as 9 /2 + a 3S 15/ 2 +...

in which case we can expand, for positive /3

r L4
d24 =- 2(a12 -a, 1 )+ s 2aa 2 - 1 _a 21 1 3

(6.2.8) + S" [2aa 3 + a2 - 4a3a 2 + 1 a - a3 +...

d46= sI/ 2 {(2a, -1) + S3 (2a 2 - 4a3)

(6.2.9) +S 6(2a3 -4a 2a 2 +2 as)+.}

Let

l= ris2 H4.(#) = riS2{1 + 2/2 + '34/3}

- rjs2j{ + S3 (2a2) + s 6(4a1 a 2 + a4/3) + s'(4a a3

(6.2.10) + 2a• + 4aa 2/3) +...}
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U0= rls 2 [40l+ 43]

(6.2.11) = rs 7 / 2 {4a, + .s 3 [4a 2 + 4a 3/3] +S s[4a3 + 4a a2I

To match coefficients we need 2a, - 1 = 0 or

(6.2.12) a, = 1/2

andal2-a, r, or

(6.2.13) = -1/4.

But then

(6.2.14) d 24 - ,[ = S +S a2.- a2 ±+ - + + +2..]

(6.2.15) d24 0 -UIl =s1/2 s3 [2a 2 - 1+ 1] +S [2a 3 + 1+ ]+...

which suggest 2a2 - 1/6 + 1/2 = 0 or

(6.2.16) a2 = -1/6.

Since the coefficient of s5 in d 24 - ul is 5/48 we take

2 5 ( 1 + 5 2 + 10 1
U2 48 -SHie(f3)I1 5~+ 4 ..

4848~
5 5 + 8 5a2 51+ 8 5

(6.2.17) - -48 48+ - - 14i92+

and

U2,9= lO0+ =3+

= ,2 6 50 25 3 +

S a,] + s9[a2 +8 aJ+
1 14 8a 48 18 1 *

(6.2.18) =SI12 S 6 25) +s9(0)+...

13 25

Now the coefficient of sl/2s6 in d 24 •, - ul is 2a3 + = and

(6.2.19) a3 = 7/30.
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We can continue in this manner, taking advantage of the symmetry of the problem. In the

meantime we have obtained
1 5 7ss

(6.2.20) '•1 S2. -S + is,+...

2 6 30

for the inner and outer boundaries near (y, s) = (1,0). The risk function can be approx-

imated by u1 + u 2 . Note that this expansion applies to d 2 4 where the variables z and

s refer to az and a2 s in the original coordinates with a = (2c 2 )-'/ 3 , i.e.,

W a- S 2 a 9S + 1a9ss+ -5 .

2 6 30

6.3 Problem 1, large s.

For c large enough, the continuation region is bounded. But for c < Z1o it becomes

unbounded and it is desirable to find an asymptotic expansion for the boundary and risk

function when s is large (which corresponds to a great deal of prior uncertainty about

kt). From Proposition 6 in Section 5 we know that for c < c13, and s > 1, that the

optimal boundary will have I&5 > ao.

This problem, where

dl2 (Y,s) = cIs_' + 1 for S > 1

represents a somewhat unusual case for large s. For a stopping risk cis- 1 + 1 for all

s, the optimal strategy is obviously that of never continuing. It is only the behavior for

s < 1 that leads to the possibility of continuing when s is large.

In contrast with this problem, consider the canonical version of that related to deciding

the sign of the mean drift of a Wiener process, the discrete time version of which is to

decide the sign of the mean of a normal distribution. In that problem where

d = s-I + s1/2Gle(ys-1/2),

the main component of the optimal Bayes risk for large s and moderate a is a multiple

of s'/ 24(ys-1/ 2 ). There is another component which is relatively small for large s and

moderate a = ys- 1 I2 . But for large a, where the boundary is located, the first term

becomes negligible and it is the second term which controls the location of the boundary.
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This fact has statistical significance. On one hand the solution of the sequential

problem is related to the backward induction of dynamic programming, and depends on

the structure of the losses when s is small or, after much sampling, has reduced the

uncertainty about the unknown mean pj. The nature of the losses after considerble

sampling has an effect on our expected loss and the optimal stopping rule. On the other

hand it has only a minor effect on an early decision of whether evidence is overwhelming

enough to stop. In brief, in statistical decision problem, early decisions are typically

insensitive to the consequences of potential late decisions.

Our current problem lacks this property. One consequence is that our asymptotic

expansions, after the main terms, will depend on some constant which depends on the

nature of the stopping risk for 0 < s < 1. That constant is not available now. In the

problem of deciding the sign of the mean, bounds on the corresponding constant were

derived by Bickel and Yahav (1967) and Mallik and Yao (1984).

First we drop the 1 from d12 and so we have d15 = cls- 1. Now let us represent a

solution of the heat equation with the form

(6.3.1) u = ros- 1/2 •k(a) + j O(w)h(y + wsl/ 2 )dw = ro 0v + v

while equations (4.54-4.56) would be more rigorous. Here, our first approximation to h(y),

giving rise to v1 , is

(6.3.2) hi(y) = rly- 2 log y 2

for y2 > 1 and 0 elsewhere, and we assume that along the boundary, for large s

(6.3.3) logs = or2 + 2a-1 loga 2 + 2(ao +-a,-2 +a2a-4-'+

Then

(6.3.4) ) - S-1/ 2 (,(a) =- S--1(, 2 )a,- ao eaO a-2+a -'

(6.3.5) V0 z s1(logs)a-eaov 52

and

(6.3.6) voY = -S--I'O(a) = -S--3/2(,2)a-1+1/2 eao alf-2+a2"-4+...
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(6.3.7) roy 'ý -s-3/2(log'9)(4-1+1/2)ea°/%/2"-7

In the meantime

h'(y) = -r,--3 (2 log y2 -2)
h() (y) = ry-(6logy 2 - 10)

h(3)(y) = -riy-5 (24 log Y2 - 52)

h(4 )(y) = riy-'(120 logy2 -308)

h(5'(y) = -ry- 7 (72010ogy - 2088)

and so

v= rl,- [a-2 log(Sa 2 ) + -•a-4 6log(sa 2) - 10]

2 1 1 ,(6.3.8) + 1 a-6 [120 log(s- 2 ) -308 +

and

vl -ris-3/2 a-1{Q-2 [210g(so 2) -2] + 1ca-4 [2410og(Sa2) 52]

(6.3.9) 4o1oa-6 ["2og(a2-2l +0..
We would like to have,

(6.3.10) rv- + v1  -1

and

(6.3.11) rovoy + v11 ;ý: 0.

Since vi, ;z -2rjs-3/ 2 (logS)1I/I, (6.3.11) requires a.... + 1/2 =-1/2 or

(6.3.12) a -1

and

(6.3.13) roe° r/' = -2r 1
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But then (6.3.10) requires

(6.3.14) r= = c,

Note that

lo.4(so2) = a 2 -- log a 2 + 2ao + 2ala- 2 + 2a 2a-4 +...

and thus, applying (4.55) and (4.56)

1/2 (2)91/+ Sh(4) (S(1 /2o) +...

v, hIs a+ shi (s/a) + 81h

V1 = C1S 1 { [I + ( - log a' + 2ao)a-2 + 2a~ar 4 + 2a 2 a6]

+ [3a-2 + (-3 log a 2 + 6ao - 5)a-4 + 6,a-

(6.3.15) + [15Ca-4 + (-15 log a 2 + 30aO - 77/2)a -6] + 105a-6 +..

and

VJ= = h'(s/12 a) + . (3)(S-/2) +...
2'1

V=V = -c•-s3/2!-l{ [2 + (-2loga 2 + 4ao - 2)a-2 + 4a, a- 4 + 4a 2a-6]

+ [12a-2 + (-12 log a 2 + 24ao - 26)a - 4 + 24aa-6]

+ 190a -4 + (-9 log a 2 + 180ao - 261)a -6] + 840a-6 
±+.

rovo = 2c~s 1{&-2 + ala-4 +(a 2 + )a-6+(a3 +a, a2 + I)k +}

rovoy = 2c~s-3/2a-'1{1 ±+.,a-2 + (a 2 +Ia-

(6.3.16) + (a 3 +ala2+ a-6 +...

Now

(6.3.17) rooy0 + v11 ;z cis-3/2{&y3 [2a, + 2 log a 2 - 4ao + 2 - 12] +±..}

and

(6.3.18) rovo + vi - ci-IRýCS c 1 {a2 [-2 _ log a2 + 2 ao + 3] + .}
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We let

(6.3.19) h2(Y) Y-2 r2l log[log Y2] + r22

which gives rise to V2 h2 + sh( 2 )/2 + and V2y = h2 + sh(3 )/2 or

V2 S - I (k-2 r2l 109 [a 2 _ log a2 + 2ao + 2a, Or-2 + + r22 +

-1 -2 log a2 + r22 + r2l a-2 log a2 a-2 + +

.s a r2l + 2ao + 2a,

(6.3.20) V2 ;:tý S-Ia- 2 r2l log a2 + r22 + r2l a-2 log a2 + 2ao + . +

and

(6.3.21) V2y = -S-3/2 a-3 I 2r2l log a2 + 2r22 +

from which it follows that

2c, - 2r2l = 0

c, (2a, - 4ao - 10) - 2r22 = 0

-cl + r2l = 0

cl(-2 + 2aO + 3) + r22 = 0

or

(6.3.22) rýj = c,

(6.3.23) r22 = -cl (2ao + 1) = c, (a, - 2ao - 5)

and

(6.3.24) a, = 4 .

Thus our current approximations involve an unknown parameter ao. We have

(6.3.25) logs = a 2 -2 log a2 + 2ao + 8a-2 +
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and
u ad- cis1/2 {f 27ieao0(a)

(6.3.26) +JO (--•) [log Z2 + log(log Z2) - (2ao + 1)]dz + ... }

The integral in the expression above does not converge because for small z , log(log z2 )

is not defined. For asymptotic purposes the value of the integrand in a bounded range

of z values is unimportant and the result would be more meaningful if the integrand

were replaced by zero over the range Izi _< 1. Chernoff (1965a) has a detailed discussion,

for the problem of deciding the sign of the mean, of why we should expect asymptotic

approximations of the form

(6.3.27) u = s1/2 {roO(a) + rs-1/2aq!(a) + J0(Z- Y)h(z)dz +...

and why they lead to asymptotic approximations. In the symmetric case r* = 0.

While we still lack control of ao, which is crucial in u, it plays a less prominent role

in the expansion for the optimal boundary which can be written

(6.3.28) &2 = log s + 2 log(log s) - 2a0 + (log s)- 1 [2 log(log s) - 8 - 2ao] +...

and for which the prominent terms do not depend on s. From one point of view this

states that for large s one should stop and reject bioequivalence when the P value

24I(-y/Vs-) is less than the nominal significance level,

2D(-6) 2s -'/ /2(lg(lo,)-3/2 eao

Since a0 is not known, this nominal significance level is as yet unspecified, but the order

of magnitude is clear.

Finally, one word of caution. At this point it is not clear that the asymptotic expan-

sion derived by considering more corrections will be as simple as (6.3.3). It may require

replacing some of the coefficients a,, a2 ,... by terms involving log a 2 or even log(log a 2 ).

6.4 Large s, Problem 2.

There is no need to elaborate here. This problem reduces to d2, = c2 s-1 + 1 for

s > 1, and hence has the same expansion as in Section 6.3. The only difference is that c1

is replaced by c2 and we have a different unknown value for a0 .
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